As clean water becomes more scarce, reusing wastewater will be increasingly vital in an arid climate. The characteristics of arid soil, such as high mineral concentrations, may directly effect microbial population, stunting crop fertility. The objective of this research is to determine how micronutrients are impacted by wastewater and ultimately how the use of wastewater contributes to microbial taxonomy.

Soil samples were collected from Pond 7 after the basin was drained and approximately two weeks of drying. The samples were gathered in a bisect manner that ranged from the remaining waters edge to the tree line of Pond 7.1

DNA analysis performed on soil samples provided microbe populations in the taxonomic form of phylum and class.

Microbe richness increases as soil texture becomes more rough, and abundance also depends on oxygen and nutrient availability.

Some microbe classes are in need of further breakdown to identify unique respiration and metabolic mechanisms.

The nineteen soil samples show a classification mixture of 58% clay, 26% clay loam and 16% sandy clay loam.

The fluctuation in both pH and salinity may be explained by the “wave-like” pattern of white minerality on the surface of the soil at the day of sampling.

The nineteen soil samples show a classification mixture of 58% clay, 26% clay loam and 16% sandy clay loam.

The fluctuation in both pH and salinity may be explained by the “wave-like” pattern of white minerality on the surface of the soil at the day of sampling.

Steps moving forward may include testing for bulk density, trace organics (C, N, K and P), antibiotics (cefotaxime, chloramphenicol, erythromycin, gentamycin, lincomycin, rifampicin, sulfadiazine, tetracycline, tylosin, vancomycin, triclosan, cetylpyridinium chloride, nalidixic acid and ciprofloxacin), microbial health, micronutrients and the direct analysis of agricultural product health when produced using reclaimed water.

We acknowledge with gratitude the assistance in sampling and research from Allan Knopf, Nathaniel Fousel, William Krukowski and Noah Rudko.

This work is supported by the USDA National Institute of Food and Agriculture, Capacity Building Projects for Non-Land Grant Colleges of Agriculture project 1017146, grant number 2018-70001-28751.